Zhi Li

Date:2018-03-01Views:3140设置

Zhi Li    Associate Professor, PI
InstituteSchool of Physical Science and Technology
Research AreaAsymmetric catalysis; Acid catalysis; Catalytic biomass conversion.
Contact Info.lizhi@@shanghaitech.edu.cn


Biography
2002-2006 University of Science and Technology of China, B.S. (Advisor: Tianpa You)
2006-2011 The University of Chicago, USA, Ph.D. (Advisor: Hisashi Yamamoto)
2011-2014 Northwestern University, USA, Postdoctoral Fellow. (Advisor: Tobin J. Marks)
2015-2021 ShanghaiTech University, School of Physical Sciences and Technology, Assistant Professor, PI.
2021-        Associate Professor, PI

Research Interests

Catalysts and catalytic reactions have been pivotal players in modern chemical industry, which supplies the human society with almost all food, energy and materials in a general sense. They are also probably our most reliable ally when we are facing the unprecedented challenge of sustainable growth. For example, in order to solve problems in the emerging fields of carbon neutralization, renewable resources utilization and greener chemical processes, chemists’ ability to develop the most efficient yet sustainable catalysts and catalytic processes has never been more important. At ShanghaiTech, we will be developing novel strong Brønsted and Lewis acids as catalysts that can be used in highly efficient and sustainable chemical processes, especially those convert renewable biofeedstocks to useful energy and material products. We will also be investigating new chiral catalysts and catalytic asymmetric reactions that promote green syntheses of pharmaceutical ingredients. With our efforts we aim to accelerate the transition of chemical industry, particularly in China, from high emission and pollution to highly sustainable and green.

ORCID: https://orcid.org/0000-0003-2770-6364


Publications

Independent Publications:

  1. Yao, J.-L.; Zhang, Z.; Li, Z.*; Scalable Transition-Metal-Free Synthesis of Aryl Amines from Aryl Chlorides through X@RONa-Catalyzed Benzyne Formation, J. Am. Chem. Soc. 2024, 146, 8839-8846.




  2. Luo, Y.-J.; Sun, J.-Y.; Li, Z.*; Rapid chemical recycling of waste polyester plastics catalyzed by recyclable catalyst, Green. Chem. Eng. 2024, 5, 257-265.

      




  3. Wang, T.; Shi, S.; Shi, Y.; Jiang, P.; Hu, G.; Ye, Q.; Shi, Z.; Yu, K.; Wang, C.; Fan, G.; Zhao, S.; Ma, H.; Chang, A. C. Y.; Li, Z.; Bian Q.*; Lin, C.-P.*; Chemical-induced phase transition and global conformational reorganization of chromatin, Nat. Commun. 2023, 14, 5556.

  4. Shi, Z.; Bian, Q.*; Li, Z.*; Access to N-Alkylazaheterocyclic Salts by Activation of Alkoxy C–O Bonds in Polyol Esters, J. Org. Chem. 2023, 88, 9769–9782.




  5. Ding, N.; Li, Z.*; Acid-catalyzed [4+1] dearomatization spiroannulation of hydroquinones and naphthols, Synlett; 2023, 34, 2417-2422. (Special issue dedicated to Prof. H. Yamamoto)



  6. Liu, D.-H.; He, H.-L.; Wang, J.-J.; Zhou, S.-Y.; Zeng, T.; Gao, X.-Y.; Xiao, Y.; Yi, X.; Zheng, A.; Zhang, Y.-B.; Li, Z.*; Acidic metal–organic framework empowered precise hydrodeoxygenation of bio-based furan compounds and cyclic ethers for sustainable fuels, Green. Chem. 2021, 23, 9974-9981.



  7. Xie, W.-B.; Li, Z.*Bis(μ-oxo)–Dititanium(IV)–Chiral Binaphthyldisulfonate Complexes for Highly Enantioselective Intramolecular Hydroalkoxylation of Nonactivated Alkenes, ACS Catal. 2021, 11, 6270-6275.


  8. Liu, X.; Liu, B.; Shi, Z.; Tan, C.; Fan, R.; Li, Z.; Tan, J.*; Hf(OTf)4-Catalyzed 1,6-Conjugate Addition of 2-Alkyl-azaarenes to para-Quinone Methides, J. Org. Chem. 2021, 86, 3615-3624.

  9. Liu, D.-H.; He, H.-L.; Zhang, Y.-B.; Li, Z.*; Oxidative Aromatization of Biobased Chemicals to Benzene Derivatives through Tandem Catalysis, ACS Sustainable Chem. Eng. 2020, 8, 14322–14329.



  10. Ding, N.; Li, Z.*; When Anthracene and Quinone Avoid Cycloaddition: Acid-Catalyzed Redox Neutral Functionalization of Anthracene to Aryl Ethers, Org. Lett. 2020, 22, 4276-4282. (CBG: https://www.chembeango.com/zixun/50298)


  11. Xie, W.-B.; Li, Z.*; Asymmetric Synthesis of Ethers by Catalytic Alkene Hydro­alkoxy­lation, Synthesis 2020, 52, 2127-2146. (Invited review)


  12. Liu, D.-H., Marks, T. J.; Li, Z.*; Catalytic One-Pot Conversion of Renewable Platform Chemicals to Hydrocarbon and Ether Biofuels via Tandem Hf(OTf)4 + Pd/C Catalysis, ChemSusChem 2019, 12, 5217-5223. (Cover Feature: ChemSusChem 2019, 12, 5214.)



  13. Liu, H.; Zhu, Y.-L.; Li, Z.*; Catalytic amidation of natural and synthetic polyol esters with sulfonamides, Nat. Commun. 2019, 10, 3881. (自然科学基金委科学传播中心: http://www.nsfc.gov.cn/csc/20340/20343/45548/; 科学网: http://news.sciencenet.cn/sbhtmlnews/2019/10/350000.shtm)

      


  14. Xu, X.-L.; Li, Z.*; Catalytic Redox Chain Ring Opening of Lactones with Quinones To Synthesize Quinone-Containing Carboxylic Acids; Org. Lett., 2019, 21, 5078-5081. (CBG: https://www.chembeango.com/zixun/43665)


  15. Xu, X.-L.; Li, Z.*; Deciphering the Redox Chain Mechanism in the Catalytic Alkylation of Quinones; Synlett, 2018, 29, 1807-1813. (Invited Synpact article)


  16. Xu, X.-L.; Li, Z.* Catalytic Electrophilic Alkylation of p-Quinones through a Redox Chain Reaction; Angew. Chem. Int. Ed., 2017, 56, 8196–8200. (Top 3 Most Accessed Communications of June 2017; X-MOL: http://www.x-mol.com/news/8483)



PhD & Postdoc publications:

1.  Lohr, T. L.; Li, Z.; Marks, T. J.* Thermodynamic Strategies for C–O Bond Formation and Cleavage via Tandem Catalysis; Acc. Chem. Res.201649 (5), pp 824–834.

2.  Lohr, T. L.; Li, Z.; Assary, R. S.; Curtiss, L. A.; Marks, T. J.* Mono- and tri-ester hydrogenolysis using tandem catalysis. Scope and mechanism; Energy Environ. Sci.2016, 9 (2), pp 550–564. 

3.  Lohr, T. L.; Li, Z.; Marks, T. J.* Selective Ether/Ester C–O Cleavage of an Acetylated Lignin Model via Tandem Catalysis; ACS Catal.20155 (11), pp 7004–7007. 

4.  Lohr, T. L.†; Li, Z.†; Assary, R. S.; Curtiss, L. A.; Marks, T. J.* Thermodynamically Leveraged Tandem Catalysis for Ester RC(O)O–R′ Bond Hydrogenolysis. Scope and Mechanism; ACS Catal.,20155 (6), pp 3675–3679. (Equal contribution) 

5.  Li, Z.; Assary, R. S.; Atesin, A. C.; Curtiss, L. A.; Marks, T. J.* Rapid Ether and Alcohol C-O Bond Hydrogenolysis Catalyzed by Tandem High-valent Metal Triflate + Supported Pd Catalysts; J. Am. Chem. Soc., 2014136, 104-107. 

6.  Assary, R. S.*; Atesin, A. C.; Li, Z.; Curtiss, L. A.*; Marks, T. J.* Reaction Pathways and Energetics of Etheric C–O Bond Cleavage Catalyzed by Lanthanide Triflates; ACS Catal.20133, 1908–1914. 

7.  Olivares-Romero, J. L.; Li, Z.; Yamamoto, H.* Catalytic Enantioselective Epoxidation of Tertiary Allylic and Homoallylic alcohols; J. Am. Chem. Soc.2013135, 3411-3413. 

8.  Li, Z.; Yamamoto, H.* Hydroxamic Acids in Asymmetric Synthesis; Acc. Chem. Res.,2013,46, 506-518.

9.  Olivares-Romero, J. L.; Li, Z.; Yamamoto, H.*; Hf(IV)-Catalyzed Enantioselective Epoxidation of NAlkenyl Sulfonamides and N-Tosyl Imines; J. Am. Chem. Soc.2012134, 5440-5443. (Top 20 Most Read Articles of March 2012

10.  Li, Z.; Yamamoto, H.*; Zirconium(IV)- and Hafnium(IV)-Catalyzed Highly Enantioselective Epoxidation of Homoallylic and Bishomoallylic Alcohols; J. Am. Chem. Soc. 2010132, 7878-7880. 

11.  Li, Z.; Zhang, W.; Yamamoto, H.*; Vanadium-Catalyzed Enantioselective Desymmetrization of mesoSecondary Allylic Alcohols and Homoallylic Alcohols; Angew. Chem. Int. Ed., 2008, 47, 7520-7522; Angew. Chem., 2008,120, 7630-7632.


返回原图
/

Baidu
sogou