生物体温度检测有助于阐明生物学机制并指导诊疗过程,如检测脑血管的温度对于研究脑功能和诊断神经系统疾病有着重要的意义。光学成像测温灵敏度高,信号采集迅速,但对于微米级的精细生物结构进行温度成像检测仍面临挑战,这主要是由于生物组织严重的吸收散射效应影响了成像检测的分辨率。
为此,朱幸俊、任无畏等课题组合作发展了基于发光纳米材料的温度成像检测方法:开发出一种近红外第二/第三光学窗口发射的纳米温度探针,通过设计镧系发光中心离子(Er3+和Yb3+)与水环境的能量传递过程,实现1550 nm和980 nm发光强度比值对温度的响应。在光学成像中生物组织的高吸收和散射效应会造成荧光信号损失进而影响测温结果,因此采用光学断层成像技术中的光传播模型以校准荧光强度,通过完善荧光强度比值与温度的关系,提高温度探针在体内测温的准确度。该测温方法成功实现了小鼠脑血管系统的高分辨率温度成像,空间分辨率可达约200 μm。